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A simplified model for the pulmonary alveolus that imitates the rhythmical expansion
of the alveolus and the periodic shear flow in the adjacent airway is explored. The
model consists of two eccentric cylinders and incompressible fluid that occupies the
gap between them. The two cylinders undergo a simultaneous rhythmical expansion
and contraction (mimicking the alveolus expansion) while the inner cylinder performs
a periodic rotation about its axis (inducing shear flow mimicking airway ductal flow).
An analytical solution is obtained for the creeping flow induced by the simultaneously
expanding cylinders. It is shown that above a certain critical value of rotation to
expansion velocity ratio, the flow exhibits characteristic features such as a saddle
point and closed streamlines about a centre, similar to those existing inside a single
alveolus during inhalation and exhalation. Poincaré maps of the trajectories of fluid
particles demonstrate that, under various flow conditions, chaotic trajectories may
exist, provided that expansion and rotation are slightly out of phase. This is similar to
normal breathing conditions where the periodic expansion of the alveolus and the tidal
flow (i.e. shear flow above the mouth of the alveolus) may be slightly out of phase. A
novel definition of overall convective mixing efficiency is also suggested that inherently
discounts reversible processes that do not contribute to mixing. It is demonstrated
that two different convective mechanisms, related to the irreversibility of exhalation
and inhalation and the onset of chaos, govern mixing efficiency in lung alveoli.

1. Introduction
Investigating the fate of micron and sub-micron particles that may reach the

lung acinus (the alveolated part of the lung) is of paramount importance in cases
concerning environmental exposure to hazardous aerosols, drug delivery, dosing and
gene therapy. The complex structure of the lung that consists of about 16 million
duct segments and 300–400 million alveoli (Weibel 1963, 1986) makes it currently
impossible to obtain a faithful numerical solution for the lung flow during breathing,
a pre-requisite to predicting particles’ trajectories and their deposition sites. The flow
field that exists inside the acinus is determined by its geometrical configuration and
the underlying breathing conditions. The acinus can be viewed as a binary tree of
alveolated airways that begins at about the 16th bifurcation and ends normally at the
22nd–23rd generation. The central channels open into multiple sacs (the alveoli), a few
hundred microns in diameter. During breathing, the channels and alveoli expand and
contract rhythmically and air enters and exits the lung periodically, with a possible
time lag between alveoli expansion and central channel flow (Miki et al. 1993).
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Acinar flow was first studied in a rigid-walled geometric model. A steady low-
Reynolds-number flow was numerically solved for an axisymmetric alveolated duct
model, which contains a central thoroughfare channel surrounded by numerous
doughnut-shaped alveoli (Federspiel & Fredberg 1988; Tsuda, Butler & Fredberg
1994a, b). Since then, several models with different alveolar shapes have been created
and the steady acinar flow has been studied both numerically and experimentally
(Tsuda et al. 1991; Darquenne & Paiva 1996; Darquenne 2001; Karl, Henry &
Tsuda 2004). Tsuda, Henry & Butler (1995) initiated the study on the effects of
acinar wall motion associated with tidal breathing on acinar flow by rhythmically
expanding and contracting the axisymmetric model in a self-similar fashion. They
found that the flow can exhibit chaotic behaviour when the creeping oscillatory
recirculation flow inside the expanding/contracting alveolus was perturbed to include
non-zero Reynolds number effects. In a more recent model, we employed a fully
three-dimensional model (Haber et al. 2000) where the unit system of alveolus
and neighbouring duct consisted of a single periodically expanding and contracting
hemi-spherical alveolus attached to an expanding flat plate. The alveolus was also
subjected to periodic, out-of-phase shear flow at the mouth of the alveolus. As a first
approximation, inertial effects were ignored, and the creeping flow limit was assumed.
The governing linear Stokes equations made it possible to superimpose the effects of
alveolar expansion/contraction and of ductal air intake.

These previous theoretical analyses, however, relied heavily on numerical solutions
of the flow fields. For instance, in Tsuda et al. (1995) and Henry, Butler & Tsuda
(2002) a fully numerical approach was employed. In Haber et al. (2000) the alveolar
expansion problem possesses an analytical solution (given by a converging infinite
series) but the shear flow problem was solved using a numerical approach (Pozrikidis
1994). These analyses may be limited, in particular when mixing properties of the sys-
tem are sought. The stream function needs to be differentiated twice to obtain the local
strain rates, an operation that could lead to large numerical errors. The complexity
of the previous models, a combination of time-dependent geometrical configuration
and kinematical conditions, led us to believe that further progress can be made if a
fully analytical solution can be obtained for a simpler model that possesses dynamical
features similar to those obtained in Tsuda et al. (1995) and Haber et al. (2000).

The most basic feature of alveolar flow is the presence of a recirculation flow
inside a dead-end side pocket (i.e. alveolus) driven by a shear flow passing over the
mouth of the alveolus (Federspiel & Fredberg 1988; Tsuda et al. 1994a, b, 1995, 2002;
Darquenne & Pavia 1996; Darquenne 2001; Haber et al. 2000; Haber & Tsuda 2003;
Henry et al. 2002; Tippe & Tsuda 2000). Inspired by the pioneering work of Aref
(1984), we revealed that this basic feature is markedly similar to that of the well-known
journal-bearing flow, namely, a recirculation flow in the space between two cylinders,
driven by the eccentric rotating of the inner cylinder. In figure 1, the alveolar flow and
the journal-bearing flow are shown side by side. Figure 1(a) illustrates a streamline
map of the three-dimensional non-expanding alveolus (Pozrikidis 1994). Figure 1(b)
is a two-dimensional projection of its central plane. Figure 1(c) depicts the streamline
map of the journal-bearing flow for rotating cylinders (Ballal & Rivlin 1976). Both
maps possess a centre and two stagnation points connected by a separating streamline
(the broken line shown in (b) and (c)). The wall of the rotating inner cylinder (figure 1c)
can be perceived as an undisturbed streamline of the shear flow that exists in an
airway adjacent to the alveolus (the straight line shown in the figure 1b). This flow
similarity suggests that the larger space between the dividing streamline and the wall
of the outer cylinder can be considered as the alveolus while the space between the
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(a) (b) (c)

Figure 1. (a, b) Streamlines generated inside a three-dimensional alveolus and at its mid-plane,
from Pozrikidis (1994) (reprinted with permission from C. Pozrikidis, figure 4b published in
Phys. Fluids vol. 6, pp. 68–79, Copyright 1994 American Institute of Physics). (c) Streamlines
generated by a rotating inner cylinder similar to Ballal & Rivlin 1976). The broken line in
(b, c) illustrates a streamline dividing the space between two non-mixing regions: the alveolus
and the adjacent airway regions.

dividing streamline and the wall of the inner cylinder represents that part of the
acinar duct where a shear flow is passing over the mouth of the alveolus.

Including the effect of alveolar expansion, Tsuda et al. (1995) and Haber et al.
(2000) showed that the flow field deviated from the pattern shown in figure 1(b) and
revealed rich patterns; e.g. under typical conditions the streamline map possessed two
equilibrium points: a saddle and a centre surrounded by a homoclinic orbit. Such
features in dynamical systems are known to be intimately related to instability under
small perturbations that may lead to chaos. Haber et al. (2000) indicated that chaotic
trajectories may exist under the effect of small velocity perturbations generated by
alveolar expansion juxtaposed with a phase lag between the periodical shear- and
the expansion-induced flows observed in real lungs. Many other, somewhat similar,
flow systems revealing chaotic behaviour have been investigated in the past (e.g. Aref
1984; Ottino et al. 1988). For instance, Aref (1984), and Aref & Balachandar (1986)
showed that chaotic trajectories may exist in the Stokesian flow bounded between
two eccentric cylinders performing a ‘blinking’ periodic rotation. Hydon (1994a, b)
addressed the fully developed quasi-steady oscillatory flow in a curved pipe where the
velocity components at the transverse plane can be derived from a stream function.
The effect of a small perturbation due to unsteady inertia (small Womersley numbers)
was explored. It was shown that the non-perturbed flow in the two-dimensional space
of the cross-section plane can be represented by an autonomous integrable one-degree-
of-freedom Hamiltonian system (with a proper transformation of the time variable).
Trajectories of a tracer moving in the perturbed near-integrable dynamical system
may form ‘islands’, in accordance with KAM theory, and chaotic regions surrounding
those islands. Solomon, Weeks & Swinney (1994) investigated experimentally the
two-dimensional flow in a rotating annulus, again analysing the effects of inertia on
the flow, revealing KAM tori and large regions with chaotic trajectories.

The objective of this study is to suggest a simplified model of the time-dependent
rhythmically expanding alveolar flow, for which an exact analytical solution exists.
Such a solution would enable us to seek: the dependence of the main dynamical
properties upon the geometrical and kinematical parameters of the system; the fluid
trajectories and the possible onset of chaos; and the evaluation of mixing and its
relation to the chaotic behaviour of particle trajectories.

The foregoing goals were achieved in the following three sections. Section 2 describes
the geometrical and kinematical properties of the model and analyses the streamline
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Figure 2. Configuration of the two eccentric cylinders and the corresponding values of the
bi-polar coordinates defining their moving walls. Fluid occupies the gap between the cylinders.

maps. Section 2.1 includes a short recapitulation of the known solution for two
rotating eccentric cylinders. Section 2.2 addresses the case of two eccentric radially
expanding cylinders, bounding an incompressible fluid and a novel exact analytical
solution is obtained. In § 2.3 the combined flow properties are described. Section 3 is
devoted to the dynamical behaviour of fluid particles and its effect on mixing. In § 3.1
fluid particle trajectories are computed and Poincaré maps are provided for different
breathing time protocols that illustrate the possible chaotic nature of the flow. In § 3.2,
a global approach is discussed by which mixing efficiency dependence on the flow para-
meters can be estimated and chaos-related behaviour of mixing efficiency is revealed.
In § 4 we summarize the main results and conclusions and the limitations of the model.

2. A cyclic flow model of the acinus
Consider two non-concentric cylinders of radii R1 and R2(R2 < R1) and eccentricity

ε (see figure 2). An incompressible fluid of density ρ and viscosity µ occupies the gap
between the cylinders. The outer cylinder performs a periodic radial expansion motion
U1(t/T ) with respect to its centre. The inner cylinder rotates with a time-dependent
periodic angular velocity Ω2(t/T , δ) and performs a radial expansion motion U2(t/T ),
with respect to its centre, so that the volume between the cylinders remains fixed, thus
satisfying the condition that the flow is incompressible. Here, T denotes the breathing
period and δ stands for the phase-lag angle between the two periodic motions. Notice
that Ω2 and U1 are associated with the forced flow intake during breathing, and the
boundary condition at the alveolus wall during lung expansion, respectively.

Assuming that the Reynolds numbers |Ω2R
2
2ρ/µ| and |U1R1ρ/µ| are much smaller

than unity (conditions satisfied by the flow fields in the acinar region), the equations
governing the flow are the quasi-steady Stokes equations,

∇ · v = 0, (1a)

µ∇2v = ∇p, (1b)

where v and p are the fluid velocity and pressure fields, respectively.
The velocity field is subjected to the following boundary conditions:

v · iη = −U1 and v · i ξ = 0 at the wall of cylinder 1 (η = η1), (2a)

v · iη = −U2 and v · i ξ = Ω2R2 at the wall of cylinder 2 (η = η2). (2b)
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Here, the natural bi-polar coordinate system (η, ξ ) is used (Happel & Brenner 1964,
see also figure 2) according to the following transformations:

x = c
sinh η

cosh η − cos ξ
and y = c

sin ξ

cosh η − cos ξ
, (3)

where iη and i ξ are the respective radial and tangential unit vectors and η1 and η2

determine the boundaries of cylinders 1 and 2, easily evaluated from the following
identities:

sinh η1 = c/R1, sinh η2 = c/R2, (4a)

where

c =
[(

R2
1 + R2

2 − ε2
)2 − 4R2

1R
2
2

]1/2/
2ε. (4b)

Notice that R1 and R2 are time dependent as are c, η1 and η2. However, this does
not introduce complications since the Stokes equations are quasi-steady and only the
instantaneous configuration affects the flow. Consequently, the solution of equations
(1) and (2) can be obtained by addressing two separate cases: (a) the flow generated
by two rotating non-expanding cylinders and (b) the flow induced by expanding
non-rotating cylinders. Superposition of these two cases would result in the solution
of (1) and (2) sought.

2.1. The flow generated by two rotating non-expanding eccentric cylinders

The solution of (1) and (2) for U1 = U2 = 0 is well known (e.g. Ballal & Rivlin 1976)
for the more general case of two cylinders rotating with angular velocities Ω1 and Ω2.
A brief recapitulation of the solution is presented here. The solution for the stream
function employing the bi-polar coordinate system is

Ψ ROT ≡ Ω2R2cψ
ROT =Ω2R2c[F0(η) + F1(η) cos ξ ]/(cosh η − cos ξ ) (5a)

where

F0(η) = (A0 + C0η) sinh η + (B0 + D0η) cosh η, (5b)

F1(η) = A1 sinh(2η) + B1 cosh(2η) + C1 + D1η, (5c)

and the coefficients A0, B0, . . . , D1 are functions of η1 and η2 (see Appendix A).
The velocity components vη and vξ are easily derived from the stream function,

vη = − (cosh η − cos ξ )

c

∂Ψ ROT

∂ξ
, (6a)

vξ =
(cosh η − cos ξ )

c

∂Ψ ROT

∂η
. (6b)

Figure 1(c) illustrates that, for large eccentricities and Ω1 = 0, the flow in the wide
gap between the cylinders contains two distinct regions (defined by a separating
streamline, shown by the broken line). The wide gap region near the outer cylinder
(below the broken line) possesses characteristic flow structures that resemble those
shown in Haber et al. (2000) for recirculation flow induced inside a rigid alveolus by
shear flow in the adjacent airway. The flow in the narrow gap region near the inner
cylinder (above the broken line) resembles the fast shear flow in an airway adjacent
to the mouth of the alveolus.

For the sake of completeness, we also provide the pressure field that exists in this
case:

P ROT = P0 +
2µΩ2R2

c
{[A1 cosh η + (2B1 − C0) sinh η] sin ξ

− [A1 cosh(2η) + B1 sinh(2η)] sin(2ξ )}. (6c)
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2.2. The flow field generated by expanding non-rotating eccentric cylinders

An analytical solution for the incompressible creeping flow field that is generated
by two expanding non-concentric cylinders has not been obtained in the past, to the
best of our knowledge. In previous papers, the common approach was to rewrite equa-
tions (1a, b) in bi-polar coordinates to yield the following governing equations for the
stream function:

Ψ EXP = c(cosh η − cos ξ )−1Φ, (7a)

∂4Φ

∂ξ 4
+ 2

∂4Φ

∂ξ 2∂η2
+

∂4Φ

∂η4
+ 2

∂2Φ

∂ξ 2
− ∂2Φ

∂η2
+ Φ =0. (7b)

To solve (7b), a separation of variables technique is normally applied that yields
the following general infinite series:

Φ =A0 sinh η + B0 cosh η + C0 η sinh η + D0η cosh η

+ [A1sinh(2η) + B1cosh(2η) + C1 + D1η]cos ξ

+

∞∑
2

[An sinh(n+1)η+Bn cosh(n+1)η+Cnsinh(n − 1)η+Dn cosh(n − 1)η]cos(nξ )

+ [Ã0 sinh η + B̃0 cosh η + C̃0η sinh η + D̃0η cosh η]ξ

+ [Ã1 sinh(2η) + B̃1 cosh(2η) + C̃1 + D̃1η] sin ξ

+

∞∑
2

[Ãn sinh(n+1)η+B̃n cosh(n+1)η+C̃n sinh(n−1)η+D̃n cosh(n−1)η]sin(nξ )

+ E0ξ sin ξ + Ẽ0ξ cos ξ (8)

where A0, B0, . . . , E0 are unknown constants to be determined.
Notice, that the solution (5) for rotating non-expanding cylinders is a truncated

expression that contains only the first two lines of expression (8). The solution is
symmetric with respect to ξ = 0 and cyclic with period 2π in ξ . Lines 4 to 6 contain
antisymmetric terms that may be required in case of expanding cylinders. Lines 4 and
7 are normally omitted since they present non-single-valued terms at, for instance,
ξ = −π and ξ = π (the same physical point) and violate the periodicity condition that
is commonly required. In our case, however, we desire that the stream function be
non-single-valued; a simple explanation of this is as follows. Since the stream function
represents the cumulative flow rate from a reference value (say at ξ = −π) it must
increase monotonically as ξ varies from ξ = −π to ξ = π . Consequently, its values at
ξ = −π and ξ = π must differ by the total flow rate (per unit cylinder length) 2πR1U1

that is induced by the expanding cylinders. (Had the cylinders been axisymmetric, the
well-known solution for the stream function would have been ψ = R1U1θ where θ is
the polar angle. Thus, ψ is obviously not single-valued, but assumes different values
for θ = π and θ = −π, the same physical point.)

Employing (6) and boundary conditions (2), rewritten in bi-polar coordinates for
non-rotating cylinders, yields

∂Ψ EXP

∂ξ

∣∣∣∣
η=ηi

=
∂

∂ξ
[Ψ EXP]η=ηi

=
Uic

cosh ηi − cos ξ
at η = ηi (i = 1, 2), (9a)

∂Ψ EXP

∂η

∣∣∣∣
η=ηi

= 0 at η = ηi (i = 1, 2). (9b)
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Integrating (9a) with respect to ξ (Gradshtyn & Ryzhik 1984) results in a useful
expression for Ψ EXPat the boundaries,

[Ψ EXP]η=ηi
=

2Uic

sinh ηi

arctan

(
tan(ξ/2)

tanh(ηi/2)

)
at η = ηi (i = 1, 2). (10)

Notice that

Ψ EXP
∣∣
ξ=π

− Ψ EXP
∣∣
ξ=−π

= πc(U1/sinh η1 + U2/sinh η2) = π(U1R1 + U2R2) = 2πU1R1

as discussed previously. Thus, from (10) and (7a) the corresponding boundary condi-
tions for Φ are

[Φ]η=ηi
= 2Ui

(cosh ηi − cos ξ )

sinh ηi

arctan

(
tan(ξ/2)

tanh(ηi/2)

)
(i = 1, 2). (11a)

Similarly, employing the above result and (7a), the associated boundary condition
for Φ , replacing (9b), is

∂Φ

∂η

∣∣∣∣
η=ηi

= 2Ui arctan

(
tan (ξ/2)

tanh(ηi/2)

)
(i = 1, 2). (11b)

If one attempts to utilize the general representation (8) and the foregoing boundary
conditions to determine the unknown coefficients, an infinite series solution for Φ (all
terms with a tilde) will be required.

A more ingenious approach is to express Ψ EXP as follows (a clue to this choice is
given by boundary condition (10)):

Ψ EXP ≡ UcψEXP = Uc

{
2 arctan

(
tan(ξ/2)

tan(η/2)

)
+

Φ̃

cosh η − cos ξ

}
(12)

within the domain η1 < η < η2, −π < ξ < π where the ‘mutual’ velocity

U = Ui/sinh ηi (i = 1, 2) (13)

is independent of i, since the incompressibility condition requires that 2πR1U1 =
2πR2U2 or from (4a) that U1/sinh η1 =U2/sinh η2.

The yet undetermined function Φ̃ satisfies equation (7b) and possesses periodic
antisymmetric terms only (generally, lines 4 and 5 in (8)). Also notice that the first
term in (12) is a valid solution of the Stokes equations. This can easily be verified
by direct substitution into the bi-harmonic partial differential equation governing the
stream function in bi-polar coordinates,(

∂2

∂ξ 2
+

∂2

∂η2

)[
(cosh η − cos ξ )2

(
∂2

∂ξ 2
+

∂2

∂η2

)]
Ψ = 0.

Substitution of (12) into (10) and (9b) results in the associated very simple boundary

conditions for Φ̃

[Φ̃]η=ηi
= 0 (i = 1, 2), (14a)[

∂Φ̃

∂η

]
η=ηi

= sin ξ (i = 1, 2). (14b)

Obviously, a solution for Φ̃ is now trivial and the only non-vanishing coefficients

to be determined are Ã1, B̃1, C̃1 and D̃1 in (8). These are easily derivable by direct
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(a) (b) (c)

Figure 3. (a) The streamlines in an expanding alveolus obtained by Haber et al. (2000).
(b) Streamlines for expanding non-rotating cylinders. (c) Pressure isobars for expanding
cylinders (R2/R1 = 0.3, ε/R1 = 0.525).

substitution of (8) into (14) to yield

Φ̃ =
sin ξ

∆1

[−(η2 − η1) sinh(η1 + η2 − 2η) + (η1 + η2 − 2η) sinh(η2 − η1)] (15a)

where

∆1 = 2[(η2 − η1) cosh (η2 − η1) − sinh(η2 − η1)]. (15b)

Consequently, an analytical expression was obtained that contains a finite number
of terms for the stream function (a combination of (12) and (15)) that governs the
flow field generated by two expanding non-rotating eccentric cylinders. For the sake
of completeness, the pressure field was also obtained,

pEXP =
2µU

c∆1

{−2[(η2 − η1) cosh(η1 + η2 − η) + sinh(η2 − η1) cosh η] cos ξ

+ (η2 − η1) cosh(η2 + η1 − 2η) cos(2ξ )} . (16)

Figure 3(a) illustrates the streamlines in an expanding alveolus obtained by Haber
et al. (2000). Figure 3(b) illustrates the typical behaviour of the stream function,
a monotonic increase in value from ξ = −π to π and streamlines terminating
perpendicularly at the cylindrical walls. Figure 3(c) illustrates pressure isobars for
the same case. This deviates noticeably from the known uniform pressure field that
exists in the gap between concentric radially expanding cylinders.

2.3. The combined flow field for rotating and expanding cylinders

The combined quasi-steady solution for rotating and expanding cylinders

Ψ = c(UψEXP + Ω2R2ψ
ROT) (17)

depends linearly on the angular velocity Ω2 and expansion velocity U , that may
be defined by quite arbitrary time-dependent functions. Their magnitudes and time
derivatives must, however, comply with the conditions imposed on quasi-steady
creeping flows, namely, that the corresponding Reynolds and Womersley numbers are
smaller than unity. Also notice that since ψEXP is not a single-valued function that
possesses a finite jump between ξ = π and ξ = −π, the combined stream function Ψ

in (17) is also an aperiodic non-single-valued function.
At a given time, the streamline map depends on the instantaneous value of the

velocity ratio
κ = Ω2R2/U. (18)
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Figure 4. The dependence of γ on the airway generation along the acinar tree. γ also
represents the ratio between the flow shear rate at the wall of the acinar duct to the strain
rate of the alveolus.

In Haber & Tsuda (2003) we similarly defined the shear parameter γ = GR/Ṙ that
was the ratio between the flow strain rate approaching the alveolus mouth and the
expansion rate per alveolus radius. Since γ is directly related to airway generation
(figure 4) it is relevant to obtain a similar relation for the current model. Thus, if G

scales with the strain rate at the narrow gap between the cylinders Ω2R2/(R1 −R2 −ε),
the alveolus radius scales with R1 and Ṙ with U1, a simple linear relation exists between
κ and γ that depends solely on the geometrical arrangement of the cylinders,

γ = κ
R2

1

c(R1 − R2 − ε)
. (19)

Thus, high values of κ correspond to high values of γ , etc. and, consequently,
for a fixed geometrical configuration, various κ values represent alveoli at different
acinar airway tree generations. Figure 5(a, b) depicts the streamline maps inside
an expanding cavity of our previous three-dimensional alveolar model and our
current two-dimensional model. Figure 5(a) illustrates that at an intermediate value
of γ = 400, recirculation flow with a saddle point and a centre already occur, while
for a smaller value of γ = 200 (figure 5b) neither recirculation flows nor centres nor
saddle points are obtained. Note that the former case occurs at alveoli up to the 20th
airway generation (see figure 4), where the flow is a balance between rotating flow
driven by the airway ductal shear flow and the flow induced by the alveolar wall
expansion. The latter case corresponds to alveolar flows deep in the acinus where the
flow is mainly determined by the expansion motion of the alveolus boundary.

We shall, henceforth, assume that the external cylinder undergoes periodic
expansion and contraction,

R1 = R0[1 − β cos(2πt/T )], (20)

with small values of β < 0.1 that correspond to a range of realistic volumetric
expansions of a lung alveolus. From (20), the wall velocity of the outer cylinder ‘1’ is
U1 = (2πR0β/T ) sin(2πt/T ) and correspondingly, the ‘mutual’ velocity U is

U = (2πR0βR1/T c)sin(2πt/T ). (21)

In addition, following Aref & Balachandar (1986), we applied different schemes for
time modulation of the angular velocity Ω2 (figure 6). The first periodic time protocol
(A), shown schematically (figure 6a), employs a simple step function in which the
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Figure 5. (i) Streamlines at the three-dimensional model midsection, from Haber et al.
(2000). (ii) Streamlines for an expanding system and a rotating inner cylinder. R̄2/R̄1 =
0.3, ε/R̄1 = 0.525, β = 0.02. (a) A saddle point can be observed for ΩT = 100. (b) No saddle
point is observed for ΩT = 60.
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Figure 6. (a) Time protocol A. Angular velocity variation during a single breathing period
with unequal inhalation (δ1 < 2πτ < δ2) and exhalation (0< 2πτ < δ1 and δ2 < 2πτ < 2π)
durations. The values of Ω during exhalation (ΩB) and inhalation (ΩA) are correlated
ΩB = ΩA(δ2 − δ1)/(2π − δ2 + δ1). (b) Time protocol B. The sinusoidal time protocol where
τ = t/T denotes the dimensionless time, (i) pertains to the time variation of the angular
velocity of the inner cylinder and (ii) the rate of expansion of the outer cylinder.
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inhalation (rotation in one direction) and exhalation (rotation in the opposite direc-
tion) times are unequal. For given inhalation and exhalation durations, the associated
amplitudes are correlated, subject to the condition that a zero net fluid volume passes
over the gap between the cylinders after a complete breathing period T . Here, again, we
assumed a phase lag between the initiation of the shear- and expansion-induced flows.

The second time protocol (B) describes schematically a sinusoidal variation with
a small phase lag angle δ (less than π/18 = 10◦) between rotation- and expansion-
induced flows,

Ω2 = Ω sin(2πt/T + δ), (22)

as observed by Miki et al. (1993). Notice, that for δ = 0 the value of γ in (19) remains
bounded for all times and can be approximated by the time-mean values of R1 and

R2, R1 = R0, R2 ≈
√

R2
0 − S/π, the latter expression including a small error of order

β where S is the time-independent volume per unit length bounded between the two
cylinders.

Consequently, the approximate value of γ in (19) (to a small error of order 1),

γ ≈ ΩT

2πβ

R2

R1 − R2 − ε
, (23)

can be applied in a manner similar to that used by Haber & Tsuda (2003) to evaluate
the airway generation number. The inaccuracy introduced in (23) of O(1) is, indeed,
small since γ values are generally of O(102–103).

Thus, the flow field generated by a rotating inner cylinder and expanding cylinders
is determined by the rotational time protocols and the three parameters β, γ , and δ of
which γ (the ratio between shear and expansion rates) is directly related to the airway
generation number. The ratio between the inhalation and exhalation durations (as
defined in time protocol A), is an additional parameter, not investigated in Haber &
Tsuda (2003). This ratio is not necessarily equal to one, as may occur under real
breathing conditions.

A final remark relates to the choice of the geometrical configuration and the kine-
matical parameters that we employed for this model. The value of β defines the
alveolar expansion so that it may range between 0.02 and 0.05, representing a three-
dimensional volumetric expansion of about 12% to 30%, common to human alveoli
(e.g. Fredberg 2000). Time was scaled by T , lengths by R0, velocities by R0/T and
angular velocities by 1/T . Thus, we were still free to choose the dimensionless values
of R2 and ε. This choice was affected by two requirements: (i) that a streamline map
similar to that shown in figure 3 is obtained (for small eccentricities a separating
streamline is not obtained) and (ii) that a saddle point (see figure 5) appears at a γ

value obtained in our previous paper (Haber et al. 2000). These requirements were
not difficult to satisfy and representative values of either (R2 = 0.3, ε = 0.525, β = 0.02)
or (R2 = 0.5, ε = 0.4, β =0.05) were employed for a γ range between zero and 4000.
Employing (23) we obtain that for the former case γ = 85.7 ΩT and for the latter
γ = 100 ΩT .

3. Results and discussion
3.1. Particle trajectories and Poincaré maps

The trajectory of a massless particle moving in the flow generated by the expanding
and rotating cylinders is determined by the following equations:

vx =
dx

dt
=

∂Ψ

∂y
, vy =

dy

dt
= −∂Ψ

∂x
,
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where Ψ is a function of x, y and t , or equivalently, ξ, η and t . This form suggests
that the system is governed by a time-dependent Hamiltonian H where H ≡ Ψ and
the pair x and y represents a single degree of freedom (Lichtenberg & Lieberman
1992). With that interpretation, the KAM theorem may be employed to explain how
a sufficiently small perturbation parameter (in our case the phase angle δ) affects only
slightly some of the closed non-perturbed streamlines to form KAM tori. In addition
the Poincaré–Birkhoff theorem also suggests that some of the closed streamlines will
break up to form stochastic trajectories bounded by the KAM tori (see also Tabor
1989; Ottino 1989 and Horner et al. 2002 that deal with the effect of Reynolds number
perturbations in cavity flows).

A more detailed description of how our system can be viewed as the sum of two
Hamiltonians one associated with an integrable system and the other with the per-
turbed one is deferred to Appendix B.

Excluding Brownian motion, gravity and inertia effects, the following equations
govern the motion of a fluid particle (in terms of the more natural coordinates ξ, η,
see Appendix C):

dξ

dt
=

(cosh η − cos ξ )2

c2

∂Ψ

∂η
+

cosh η sin ξ

c

dc

dt
, (24a)

dη

dt
= − (cosh η − cos ξ )2

c2

∂Ψ

∂ξ
+

sinh η cos ξ

c

dc

dt
, (24b)

where Ψ is the combined stream function defined in (17) and

dc

dt
= −R1

c

dR1

dt
= −U.

A straightforward substitution of (5), (12) and (15) into (24) results in a system
of two nonlinear ordinary differential equations where the right-hand side depends
explicitly on ξ , η and time,

dξ

dt
=

U

c
sin ξ

{
− (2 cosh η− cos ξ )− sinh η

2∆1

[−(η2 −η1) sinh(η2 + η1 −2η) + (η2 + η1 −2η)

× sinh(η2 − η1)] +
(cosh η − cos ξ )

∆1

[(η2 − η1) cosh(η2 + η1 − 2η)

− sinh(η2 − η1)]

}
+

Ω2R2

c
{A0(1 − cosh η cos ξ ) − B0 sinh η cos ξ

+ C0[η(1 − cosh η cos ξ ) + sinh η(cosh η − cos ξ )] + D0[−η sinh η cos ξ

+ cosh η(cosh η− cos ξ )] + A1 cos ξ [−sinh η sinh(2η) + 2(cosh η− cos ξ )

× cosh(2η)] + B1 cos ξ [−sinh η cosh(2η) + 2(cosh η − cos ξ ) sinh(2η)]

− C1 sinh η cos ξ + D1 cos ξ (−η sinh η + cosh η − cos ξ )}, (25a)

dη

dt
=

U

c

{
−sinh η cosh η − cos ξ cosh η − 1

2∆1

[−(η2 − η1) sinh(η2 + η1 − 2η)

+ (η2 + η1 − 2η) sinh(η2 − η1)]

}
+

Ω2R2

c
{sin ξ (A0 sinh η + B0 cosh η

+ C0η sinh η + D0η cosh η) + sin ξ cosh η[A1 sinh(2η)

+ B1 cosh(2η) + C1 + D1η}. (25b)
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Initial
position

Figure 7. Poincaré map for a single particle introduced initially at (ηi, ξi) = (0.6, π/3) and its
position sampled after each breathing period during 500 breathing cycles. Chaotic behaviour
can be observed. Rotation of inner cylinder is according to protocol A (figure 6) with
δ1 = π/18 and δ2 = 5π/6 and ΩT =20 associated with airway generation 18. The geometrical
configuration is defined in figure 5 where the dotted and full circles pertain to the minimum
and maximum size of the cylinders at the onset of inhalation and exhalation, respectively.

Here, A0, B0, etc. are time-dependent functions (since η1 and η2 vary with
time) given in Appendix A.

Notice that the dynamic system (25) possesses three dimensions (η, ξ, τ ), the
minimum required to exhibit chaotic behaviour (Tabor 1989). In past models that have
been used to investigate particle trajectories in alveoli, the right-hand-side expressions
were either given numerically or consisted of an infinite sum. The right-hand-side
analytical expression of system (25), however, can be evaluated efficiently at any
desired time and spatial location, thus avoiding sum truncations or interpolations
between adjacent grid points. Such high accuracy is greatly desired, in particular if
chaotic trajectories are expected.

We also notice that for δ = 0, no phase lag exists between the rotation- and
expansion-induced flows and the solution should exhibit a simple periodic motion,
as a result of the reversibility of the quasi-stationary Stokes equations of motion.
Consequently, this case can conveniently be employed to verify the accuracy of any
chosen numerical code. Self-starting ‘ode’ solvers, subroutines ‘ode45’ and ‘ode15s’,
of MATLAB R© were examined. Several particle trajectories were computed and their
final position after a single breathing cycle was compared with their initial position
based on absolute tolerance of 10−16 and relative tolerance of 10−8. We picked the
more accurate, albeit more time consuming, ode15s that introduced a maximum error
of order 10−6R1 in particle position.

The program was run during five hundred breathing cycles and both trajectories
and Poincaré maps, based on sampling particle physical location after each breathing
cycle, were obtained. The results illustrate the rich behaviour of massless particle
motion for which periodic, quasi-periodic and chaotic trajectories may exist.

In figures 7 to 12 the following dimensionless geometrical parameters were emp-
loyed: R2 = 0.3, ε = 0.525, which yield a single separation surface between the flow near
the inner cylinder and the flow inside the wide gap (rotation only case). From figure 7
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Initial
position

Figure 8. As figure 7 but for a single particle introduced initially near the inner cylinder at
(ηi , ξi) = (1.5, π/3). Chaotic behaviour can again be observed.

onward the broken and full circles show the cylinder’s walls at the onset of inhalation
and exhalation, respectively. In figures 7 to 9 we assume that R1 = 1−0.02 cos(2πτ ),
breathing protocol A, and ΩT = 20 associated with γ ≈ 1700, or airway generation
18, according to (23). Here τ = t/T is the dimensionless time. The phase angles
used are δ1 = π/18 and δ2 = (5/6)π (see figure 6) so that the breathing process has
unequal inhalation and exhalation time periods. In figure 7, a single particle is
introduced initially at (ηi, ξi) = (0.6, π/3) and its path is computed during 500 cycles.
Its location is sampled after every breathing period to derive a simplified depiction of
its behaviour. The Poincaré map thus obtained illustrates that the particle wanders
within a large area between the cylinders with a characteristic stochastic behaviour.
It leaves and enters the alveolus, spending part of its time in the adjacent airway with
an obvious exclusion of a small region encompassing the stagnation point. In figure 8
a particle that is initially placed near cylinder 2 at (ηi, ξi) = (1.5, π/3) creates a thin
stochastic layer, never leaving that area during the 500 cycles. That is, the particle
never enters the alveolus. However, in figure 9(a), remarkable, quasi-periodic tori of
order 4 are obtained for a particle initially placed at (ηi, ξi) = (0.8, 0), a location inside
the unvisited region observed in figure 7. In figure 9(c) this particle’s trajectory during
the 500 breathing cycles is also illustrated, reaffirming its quasi-periodic nature. In
figure 10 a four-fold lower value of the parameter ΩT = 5 that is associated with
γ ≈ 420, and represents an alveolus located at airway generation 21, was examined.
A particle was placed at (ηi, ξi) = (0.6, π/3) and again a chaotic map was obtained,
revealing that the particle never left the alveolus. However, in figure 11 for which
the parameter ΩT = 1 is further reduced (representing generation 22 with γ ≈ 85) a
particle initially placed at the same location, namely at (ηi, ξi) = (0.6, π/3), undergoes
only a quasi-periodic motion. Figure 11(b, c) that illustrates the time evolution of
η, ξ and the particle trajectory reaffirms this conclusion. These last results indicate
the importance of the alveolus’ location along the acinar tree, affecting, for instance,
mixing efficiencies, as shall be shown later.

In figure 12(a) time protocol B (figure 6) is employed with δ = π/18 representing
a characteristic sinusoidal breathing process. The particle is initially again placed at
(ηi, ξi) = (0.6, π/3), with ΩT = 20. Once again a chaotic behaviour is observed where
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Figure 9. (a) Poincaré map for a single particle introduced initially at (ηi , ξ i) = (0.8, 0) and its
position sampled after each breathing period during 500 breathing cycles. Quasi-periodic tori
of order 4 are obtained. Rotation of inner cylinder is according to protocol A (figure 6) with
δ1 = π/18 and δ2 = 5π/6 and ΩT =20 associated with airway generation 18. The geometrical
configuration is defined in figure 5, where the dotted and full circles pertain to the minimum
and maximum size of the cylinders at the onset of inhalation and exhalation, respectively.
(b) Time evolution of η and (c) trajectory of the particle that illustrates its quasi-periodic
motion.

Initial
position

Figure 10. Poincaré map of a particle defined in figure 7 with ΩT = 5 associated with
airway generation 21. Chaotic behaviour is observed.

the particle samples locations within both the airway and the alveolus, generally
similar to the result shown in figure 7, with a somewhat larger region unvisited.
Figure 12(b, c) reaffirms this conclusion, showing the time evolution of η, ξ and
particle trajectory during 500 breathing cycles. This result reaffirms the conclusion
reached by Haber et al. (2000) who also used time protocol B.
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Figure 11. (a) Poincaré map of a particle defined in figure 7 with ΩT = 1 associated with
airway generations 22, 23. (b) Time evolution of η and ξ . (c) Particle trajectory. Quasi-periodic
motion is observed.

A different parameter set was employed for figures 13 to 18 where R2 = 0.5, ε = 0.4
and R1 = 1–0.05 cos(2πτ ) with the higher alveolar expansion ratio β = 0.05. In this
case the appearance of a saddle point (for δ = 0 and equal inhalation and exhalation
periods) occurs at about γ = 300. Figure 13(a) illustrates the simultaneous behaviour
of 20 particles placed initially along the straight line defined by ξ = 0 and π, at equal
intervals in η (from η =0.63 to 1.1). The sinusoidal time protocol B was employed
during 500 cycles with lag angle δ = π/18 and ΩT = 4 (γ =400). A small area of
chaos exists near the cylinder walls and quasi-periodic orbits survive in most of the
domain occupied by the alveolus. A similar behaviour with a larger area of chaos
inside the alveolus domain is shown in figure 13(b) where a higher value of shear
ΩT = 20 (γ = 2000) was employed. A completely different Poincaré map is shown in
figure 14 for a small value of shear ΩT = 0.5 (γ = 50). The chaotic region disappears
and quasi-periodic orbits dominate the behaviour of a massless tracer.

In conclusion, the effect of unequal inhalation and exhalation periods leads to
chaotic behaviour, similar to the case in which a sinusoidal time lag between breathing
and expansion is assumed. The appearance of chaos under slight disturbances of δ

and uneven durations of inhalation and exhalation is intimately connected to the
appearance of a saddle point. The effect of γ on mixing is more complex and will be
dealt with separately in the following subsection.

3.2. Mixing

The investigation of mixing and its quantification is carried out for particles about
0.2 µm to 1 µm in diameter that are in abundance, for instance, in cigarette smoke,
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Figure 12. (a) Poincaré map for a single particle introduced initially at (ηi, ξi) = (0.6, π/3) and
its position sampled after each breathing period during 500 breathing cycles. Chaotic behaviour
can be observed. Rotation of inner cylinder is according to Protocol B (figure 6) with δ = π/18
and ΩT =20 associated with airway generation 18. The geometrical configuration is defined
in figure 5, where the dotted and full circles pertain to the minimum and maximum size of
the cylinders at the onset of inhalation and exhalation, respectively. (b) the time evolution of
η and (c) Trajectory of a particle is also shown elucidating the chaotic behaviour of such a
particle.

(a) (b)

Figure 13. Poincaré map for 20 particles initially placed at ξ =0, π and η = 0.63 to 1.1 at 10
equally spaced η locations. Narrow chaotic regions near the walls and wider chaotic regions that
occupy a larger region of the alveolus domain can be observed for cases (a) and (b), respectively.
The sinusoidal time protocol B was employed with δ = π/18, S/π = 0.75, ε = 0.4, β =0.05 for
(a) ΩT = 4 and (b) ΩT = 20.
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Figure 14. As figure 13 but for ΩT = 0.5. No chaotic regions are observed and the space is
dominated by quasi-periodic orbits.

and have prominent physiological effects. Generally, for particles in this size range,
Brownian motion, gravitational sedimentation and particle inertia are considered to be
less significant than particle convection†, originated by the alveolar flow, in particular
at the proximal region of the acinar tree. Nevertheless, whereas particles which ex-
perience chaotic advection in Hamiltonian systems are confined to or by KAM tori and
cantori, small-scale processes such as Brownian motion or gravitational sedimentation
may enable particles to cross such boundaries without hindrance. Consequently it is
conceivable that even fairly weak intrinsic motion might disrupt chaotic advection;
particles might move between regions where the flow is chaotic and regions where
it is regular. These combined effects, that have still to be explored, have not been
addressed in this study.

Mixing of much finer or ultrafine particles are strongly affected by Brownian motion,
particularly at the distal regions of the acinar tree.

In the following analysis, we focus on mixing processes directly related to quasi-
periodic and chaotic motion of the particles. The cyclic analytical model proposed
here lends itself to a relatively easy computation of the overall mixing efficiency. A
well-defined norm that may quantify local instantaneous mixing in hydrodynamic
systems is directly correlated to the value of the second invariant of the shear rate
tensor S : S where

S = 0.5(∇v + ∇vT ). (26)

An instantaneous measure of mixing rate M in the system as a whole,

M = 2

∫
V
(S : S) dV, (27)

† For instance, if we consider a 0.5 µm particle, its diffusion coefficient at body temperature is
about 6.8 × 10−11 m2 s−1. The diameter of a typical alveolus is about 200 µm. The fluid velocity
varies depending upon breathing frequency and the location of the alveolus along the acinar tree.
For a typical breathing period of 5 s and alveoli at the 16th generation, the velocity scale inside
the alveoli is about 0.03 cm s−1 and consequently the Péclet number is about 440. At the 22nd
generation it decreases to about 7. The effects of sedimentation due to gravity and particle inertia
are even smaller.
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is proportional to the rate of energy dissipation, where V is the volume occupied by
the fluid. This definition is based on the notion that the rate of energy dissipation,
intimately linked with the rate of entropy production, is directly correlated with the
amount of disorder required to obtain a well-mixed system. Thus, it seems that the
higher the value of M the better the mixing. This rather simplified view, addressed
later in more detail, may lead to erroneous results if not applied carefully.

Notice that the definition of M based on S : S, rather than the more common
(S :S)1/2‡, greatly simplifies its evaluation. By a simple application of the Gauss
theorem the following identity can easily be proven:

M = 2

∫
V
(S :S) dV =

1

µ

∫
A

(n · σ · v) dA, (28)

where A is the surface area bounding the volume V and n is a unit vector perpendicular
to A and pointing outward from V .

Henceforth, we shall address the case of a single alveolus and the adjacent airway.
Thus, according to our model, the volume of the system pertains to the space bounded
by the two cylinders. In this case the velocity on the boundary A is a known constant
quantity and the evaluation of M entails a simple evaluation of the stress tensor σ

at the surface A. Notice that in our case A includes the surfaces A1 + A2 of the outer
and inner cylinders (per unit length), respectively, for which

n1 = −iη, n2 = iη, dA1 =
c

cosh η1 − cos ξ
dξ, dA2 =

c

cosh η2 − cos ξ
dξ

v|A1
= −iηU1, v|A2

= −iηU2 + i ξΩ2R2 V = π
(
R2

1 − R2
2

)
.

⎫⎬⎭ (29)

Substitution of (29) into (28) yields

M =
c

πµ

[
U1

∫ π

−π

σηη(η = η1)

cosh η1 − cos ξ
dξ − U2

∫ π

−π

σηη(η = η2)

cosh η2 − cos ξ
dξ

+Ω2R2

∫ π

−π

σξη(η = η2)

cosh η2 − cos ξ
dξ

]
. (30)

The general expressions for the stress components σηη and σξη in terms of the
stream function are

σηη + p = −σξξ − p

= −2µ

c2
(cosh η − cos ξ )

[
(cosh η − cos ξ )

∂2Ψ

∂ξ∂η
+ sin ξ

∂Ψ

∂η
+ sinh η

∂Ψ

∂ξ

]
, (31a)

σξη =
µ

c2
(cosh η − cos ξ )

[
(cosh η − cos ξ )

(
∂2Ψ

∂η2
− ∂2Ψ

∂ξ 2

)
+ 2 sinh η

∂Ψ

∂η
− 2 sin ξ

∂Ψ

∂ξ

]
. (31b)

Introduction of (5), (6c), (12), (15c), (16), (17) into (31) and (30) yields, after some
tedious algebra, the following simple expression for M:

M = 2πΩ2R2
2[C0 cosh(η2) + D0 sinh(η2)] + 4πU 2[(η2 − η1) sinh(η2 − η1)/∆1

− 0.5(e−2η1 − e−2η2 ) + sinh(η2 − η1) sinh(η2 + η1)], (32)

where C0, D0 and ∆1 are defined in Appendix A with Ω1 = 0 and Ω2 = Ω .

‡ In the past we (Haber et al. 2000) and others (e.g. Ottino 1989) have used (S :S)1/2 to scale
local instantaneous mixing. The difference is not fundamental since both quantities are positive
definite.
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Figure 15. (a) Specific mixing for time protocol B with ΩT = 2 and phase angle δ = 0. A
two- hump distribution was obtained, symmetric with respect to t/T = 0.5. (b) As (a) but with
phase angle δ = 10◦. A two- hump distribution can be observed but Φ is no longer symmetric,
a mark of irreversibility.

Figures 15(a) and 15(b) illustrate the specific mixing Φ =M/[π(R2
1 − R2

2)] during a
single breathing cycle, a parameter that is independent of the system size. Time was
scaled with the inverse of the breathing frequency 1/T . In figure 15(a) we used the
time protocol B with phase angle δ = 0 and ΩT =2. A two-hump distribution was
obtained, symmetric with respect to t/T =0.5. This symmetry is a direct outcome
of the flow reversibility of Stokes flows. However, in the case in which a phase lag
exists between ductal flow (rotation) and the expansion of the alveolus, inhalation
and exhalation no longer lead to reversible processes. This is shown in figure 15(b) for
which a phase angle of δ = π/18 and ΩT = 2 is applied. A two-hump distribution can
still be observed but Φ is no longer symmetric, a mark of the foregoing irreversibility.

If M represents a measure of the instantaneous mixing rate that also accounts for
the system size, the extent of mixing increases with Ω . As we shall show later this
result is rather simplistic since it does not represent the overall extent of mixing in
a system during an entire breathing period. Such a quantity, M , can be defined by
calculating the temporal average of M over a single breathing period T ,

M =
1

T

∫
T

M dt. (33a)

This definition results in a dimensional value. A dimensionless scale that may better
represent the extent of mixing per unit cycle is

E =
1

V 1/2

∫
T

M1/2 dt. (33b)

However, this expression cannot distinguish between reversible and irreversible
flows. For instance, when periodic flows with zero mean are applied, e.g. a case
in which the inhalation and exhalation processes are exactly reversible, every unit
volume inside the system returns to its initial shape after a full breathing period and,
in essence, no lasting mixing occurs. Expressions (33a) or (33b), however, predict
non-zero positive values regardless of flow reversibility. This example demonstrates
that the rather sensible approach, linking generation of energy dissipation or entropy
production with disorder and mixing efficiency, may result in erroneous conclusions,
particularly in nearly periodic Stoksian fields. A possible method to circumvent
this difficulty is to introduce a ‘Poincaré shear rate’, the symmetric part of the
displacement gradient tensor after a full breathing cycle (Haber et al. 2000), that
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replaces the normally defined S. Thus, a unit time is replaced by a unit cycle. In this
case, fully reversible flows will result in zero S, and, consequently, a zero value of M

will be obtained. However, ‘Poincaré shear rates’ are not easily calculated and pose
a formidable analytical task in our case (one needs to integrate (25) from t = 0 to
t = T ).

We suggest a novel and much simpler method for scaling an ‘overall extent of
mixing’ per unit cycle that is parameter P dependent and that subtracts unwanted
effects of flow reversibility, namely,

EP =
1

V 1/2

∣∣∣∣∣
(∫

T

M1/2dt

)
P={PRev+∆P }

−
(∫

T

M1/2dt

)
P={PRev}

∣∣∣∣∣ , (33c)

where ∆P is a perturbation to P . Here, the second integral employs a basic set of
parameters {PRev} yielding reversible inhalation and exhalation flows while the first
integral is evaluated for a finite perturbation of a single parameter P . For example,
in our case we know that a basic parameter set that yields reversibility requires that
δ = 0 and that inhalation and exhalation times are equal. However if δ is not zero
(we shall assume the physiologically observed value of δ = π/18), quasi-periodicity or
chaos can be expected and inhalation and exhalation do not induce reversible flows.

Overall mixing efficiencies for various values of ΩT and system configurations were
examined with a perturbation parameter δ = π/18. The reversible set chosen included
PRev = {time protocol B, R0 = 1, β = 0.05, S/π = 0.75, ε = 0.4, δ = 0}. For β = 0 (no
expansion) all of the above reversible sets generate a streamline map similar to that
illustrated in figure 1(c). It includes a separation surface that divides the flow field
into two distinct regions and a stagnation point inside the wide gap region.

Calculating the overall mixing efficiency dependence on γ revealed a striking
pattern. A typical case is provided in figure 16. We normalized the results with the
value of Eδ

16 (the extent of overall mixing at the 16th airway generation) to mark
the relative mixing efficiency of the various generations. The figure illustrates that
the extent of mixing is zero for zero values of γ (or Ω), corresponding to the
most distal end of the acinar tree, generation 23, it increases to a local maximum,
corresponding to generation 22, and decreases to a local minimum for a γmin value
about 300 (generation 21). It increases steadily again, almost linearly, with higher
values of γ . This result is counter-intuitive since it seems that mixing should increase
monotonically with γ , the argument being that higher rotations (shear-induced flow)
induce stronger stretching and rotations of fluid elements, resulting in better mixing.
This view is, however, contradicted by our results and it seems that two competing
mechanisms determine the overall extent of mixing. The first mechanism plays a
significant role when γ values are low (< γmin) and the second plays a predominant
role when γ values are larger than γmin. A careful examination of the streamline
maps of all the above-mentioned configurations reveals that the appearance of a
saddle point and of a homoclinic orbit occurs at γ ≈ γmin. It is well accepted that
chaotic behaviour of a system and the appearance of saddle points and homoclinic
orbits are intimately related. Thus, it is very likely that once chaos occurs the overall
extent of mixing increases for the γ range γ >γmin. However, for γ values lower
than γmin trajectories of the majority of fluid particles would exhibit quasi-periodic
behaviour (see for example figure 14) and a different kinematic mixing mechanism
becomes predominant. A possible explanation of this mechanism is based on the
following observations: flow induced solely by either periodic rotation or by periodic
expansion is exactly reversible and thereby would yield zero overall mixing if operated
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Figure 16. Mixing efficiency as a function of the angular velocity associated with airway
generation via the equation γ =100ΩT . The reversible set is Prev = {time protocol A, R0 = 1,
β =0.05, S/π = 0.75, ε = 0.4, δ = 0}. Near zero values of γ pertaining to the lowest end of the
acinar tree, generation 23, the overall mixing efficiency is small but is rapidly increasing to a
local maximum value at about γ = 70 that pertains to generation 22 and then decreases to a
local minimum at generation 21 (at about γ = 320) and increases again up the acinar tree.
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separately. Only a combination of these two rhythmical out-of-phase motions would
induce kinematically irreversible motion, manifested by the quasi-periodic orbits of
the fluid particles, and consequently mixing. Indeed, if one of the rhythmical motions
dominates the flow, it becomes nearly reversible (when Ω is small expansion dominates
and when Ω is relatively high the shear-induced flow dominates). Consequently,
irreversibility is highest at an intermediate value between zero and γmin, and mixing
is most pronounced for intermediate values of Ω in this region. We believe that
this reversible/irreversible mechanism results in the local minimum and maximum
observed in figure 16. It should be noted that Brownian motion of fine particles must
be considered and, consequently, its effect on mixing must be accounted for, especially
for low values of γ (< γmin) representing the smallest airways.

It should also be clear that the overall extent of mixing, so defined, pertains to a
single alveolus at a certain location down the acinar tree. It by no means reflects a
global mixing efficiency of the acinus. An obvious extension of the foregoing to the
whole lung is straightforward. If the total number of alveoli attached to all airways
of generation i is Ni , the instantaneous extent of mixing (defined in (27)) of a single
alveolus of volume Vi is Mi . If Macinus denotes the corresponding value for the whole
acinus of volume Vacinus =

∑
NiVi , then

Macinus =

23∑
16

MiNi (34a)

and

EP
acinus =

1

V
1/2
acinus

∣∣∣∣∣
(∫

T

M
1/2
acinusdt

)
P={PRev+∆P }

−
(∫

T

M
1/2
acinusdt

)
P={PRev}

∣∣∣∣∣ . (34b)

For regular perturbations for which the following limit exists, we may also define
‘sensitivity of mixing to a parameter P ’ as

sP = lim
∆P →0

1

V 1/2

∣∣∣∣∣
(∫

T

M1/2dt

)
{PRev+∆P }

−
(∫

T

M1/2dt

)
{PRev}

∣∣∣∣∣
‖∆P ‖ (35)

where in this case a certain parameter, say P , is perturbed by an infinitesimally small
value ∆P to investigate the sensitivity of the overall extent of mixing to variations of
this parameter.

To calculate mixing sensitivity to phase angle δ we use the foregoing reversible
parameter set and calculate sδ according to (35) for increasingly smaller values of δ.
Figure 17 depicts mixing sensitivity (per δ in degrees) for various values of ΩT . An
almost linear increase is obtained except for ΩT values less than 0.2 (see inset). This
reflects the regular dependence of Eδ on the phase angle δ according to time protocol
B (figure 6b).

4. Summary
A simple model for the lung alveoli is suggested that consists of fluid bounded by

walls of two eccentric cylinders that perform periodic expansion and periodic rotation
(of the inner cylinder only). The former mimics the expansion of an alveolus while the
latter generates the shear flow that exists inside an airway adjacent to the alveolus.
Varying the angular velocity of the inner cylinder makes it possible to imitate the
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Figure 17. Mixing sensitivity (per δ in degrees) for various values of ΩT . An almost linear
increase is obtained that reflects the regular dependence of Eδ upon the phase angle δ according
to time protocol B (figure 6).

flow induced within alveoli attached to different airway generations down the acinar
tree.

Poincaré maps were drawn for which a fluid particle location was sampled after
every breathing period. These reveal that chaos may exist when either: (i) a phase angle
exists between the periodic motions of cylinder expansion and of rotation, similar
to the flow generated by alveolus expansion and airway flow, or, (ii) inhalation and
exhalation durations are not identical. Quasi-periodic and chaotic patterns may co-
exist depending on the initial location inside the alveolus and the ratio γ between
shear- and expansion-induced flows. Quasi-periodic trajectories are mainly observed
near the centre region of the alveolus (where a stagnation point exists for non-
expanding cylinders) while chaotic patterns begin near the walls, namely, near the
alveolus mouth and its boundary where stretching and folding due to shear and
expansion are the strongest.

An easily calculated measure of the overall extent of mixing that disregards
unwanted reversible flows was suggested. The dependence of the mixing on γ exhibits
a ‘strange’ counter-intuitive behaviour: an increase to a local maximum, a decrease to
a local minimum and a steady monotonic increase as γ increases. (A local maximum
and minimum occur at the 22nd and 21st generations, respectively. Then, the mixing
efficiency increases monotonically as we move to more proximal generations of the
acinar tree.) This behaviour can be attributed to two different mechanisms: for
small values of γ (between zero and that yielding a minimum extent of mixing) a
reversibility/irreversibility mechanism dominates the flow while for high γ values the
flow becomes chaotic and mixing is enhanced. Consequently, poor mixing is expected
inside alveoli placed at the 23rd generation since the recirculation zone in the model
is largely filled with KAM tori. No mixing occurs if the phase angle δ between the
rhythmical shear- and expansion-induced flows is zero. It is enhanced monotonically
as δ increases. We have also defined mixing sensitivity with respect to an operational
parameter and have shown that the overall extent of mixing with respect to the phase
angle δ decays monotonically with airway generation number.

Finally, we would like to point out several drawbacks of this model: the flow is
solved in a two-dimensional rather than in the three-dimensional space in which the
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actual flow takes place; the flow near the inner cylinder represents just the shear part
of the actual flow inside the airway adjacent to the mouth of the alveolus; the length
of the narrow gap representing the short duct connecting adjacent alveoli cannot
be controlled whereas in a real acinar tree the alveoli at the highest generations
may practically touch; the 23rd generation alveoli might be interconnected rather
than attached to an adjacent airway; Brownian motion and its effect on mixing was
excluded. The coupling of convective, diffusive and gravitational forces and their
effect on mixing still awaits exploration.

Despite the foregoing limitations, we believe that the qualitative nature of the flow
in the alveolus region, by far the most interesting region, is faithfully simulated by
this simple model.

This research was supported by the Fund for The Promotion of Research at The
Technion, and National Heart, Lung and Blood Institute Grant NIH HL054885,
H1070542, and HL074022.

Appendix A
The general expressions for coefficients defined in (5) that also include rotation of

cylinder 1 possess the following general form (we use the abbreviations ‘sh’ for ‘sinh’
and ‘ch’ for ‘cosh’):

A0 =
1

∆0

[
E(chη1chη2shη21 − η1ch

2η2 + η2ch
2η1) − Ω1R1

Ω2R2

(η2η21chη1 − η1chη2shη21)

− (−η1η21chη2 + η2chη1shη21)

]
,

B0 =
1

∆0

{
0.5E[η21(η2 + η1) + η1sh(2η2) − η2sh(2η1) − sh(η1 + η2)shη21] − Ω1R1

Ω2R2

× (−η2η21shη1 + η1shη2shη21) − (η1η21shη2 − η2shη1shη21)

}
,

C0 =
1

∆0

[
Esh(η1 + η2)shη21 − Ω1R1

Ω2R2

(−η21chη1 + chη2shη21) − (η21chη2 − chη1shη21)

]
,

D0 =
1

∆0

{
E[−η21 − ch(η1 + η2)shη21] − Ω1R1

Ω2R2

(η21shη1 − shη2shη21)

− (−η21shη2 − shη1shη21)

}
,

A1 = Ech(η1 + η2)/∆1, B1 = −Esh(η1 + η2)/∆1,

C1 = E(η1 + η2)chη21/∆1, D1 = −2Echη21/∆1,

where

η21 = η2 − η1, ∆0 = sh2η21 − η2
21, ∆1 = 2(η21chη21 − shη21),

E =

[
Ω1R1

Ω2R2

(η21shη1 − shη2shη21) + (−η21shη2 + shη1shη21)

]
[2chη21∆0/∆1 + η21 + shη21ch(η1 + η2)]

.

In our lung model we assume the particular case in which Ω1 = 0. Thus, all the
foregoing coefficients depend solely on η1 and η2. It can also easily be proven that
EcΩ2R2 is the total flow rate passing through the gap between the rotating cylinders.
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Note that the foregoing expressions differ in appearance from those given by
Ballal & Rivlin (1976). To validate our results and the numerical procedures later
employed, we tested the most complex case in which the eccentricity is large and
both Ω1 and Ω2 are non-zero. The agreement with the streamline map shown by Aref
(1984) was excellent.

Appendix B
The stream function (17)

Ψ = c(UψEXP + Ω2R2ψ
ROT) ≡ H (B 1)

can also be viewed as a one-degree-of-freedom Hamiltonian system, the Cartesian
coordinates x and y serving as the displacement and the associated momentum. For
small values of β , equation (B1) can be rewritten as

H =[cR2ΩψROT]β=0 sin(2πt/T + δ) + β[2πR0R1ψ
EXP/T ]β=0 sin(2πt/T ) + O(β2).

(B 2)
Thus, in the absence of the cylinders’ radial motion, the Hamiltonian H0 can be
defined as

H0(x, y, t) = [cR2ΩψROT]β=0 sin(2πt/T + δ) (B 3)

where the term in square brackets is time independent (the geometry of the system
remains fixed if β = 0).

The system of differential equations associated with H0 that describe the fluid
particle motion is

dx

dt
=

∂H0

∂y
=

[
cR2Ω

∂ψROT

∂y

]
β=0

sin(2πt/T + δ), (B 4a)

dy

dt
= −∂H0

∂x
= −

[
cR2Ω

∂ψROT

∂x

]
β=0

sin(2πt/T + δ). (B 4b)

Clearly, this system is integrable (simply ‘divide’ (B4b) by (B4a) to obtain that dy/dx is
time independent). Thus, the streamline map shown in figure 1(b) remains unchanged
for all times and all trajectories are regular.

The perturbation induced by the radial motion of the cylinders is governed by the
Hamiltonian

H ′ = β[2πR0R1ψ
EXP /T ]β=0 sin(2πt/T ) (B 5)

where H ′ vanishes as β diminishes to zero. Note that also here the expression in
square brackets is time independent.

It is interesting to note that for cases in which δ = 0 (the rhythmical expansion
of the alveoli is in phase with the tidal flow) the Hamiltonian H = H0 + H ′ is still
integrable. Only if the tidal flow and the flow induced by alveolus expansion are out
of phase may one expect chaos. Thus, to apply the KAM theorem one should expand
H0 with respect to δ and consider the following separation of H :

H = {[cR2ΩψROT]β=0 + β[2πR0R1ψ
EXP/T ]β=0} sin(2πt/T )

+ δ[cR2ΩψROT]β=0cos(2πt/T ) + O(β2) + O(δ2). (B 6)

Here, the product of the expression in curly brackets with sin(2πt/T ) represents the
Hamiltonian associated with the integrable system while that shown by the second
line is the Hamiltonian of the perturbed system. For δ sufficiently small, the KAM
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theorem would apply since the latter vanishes as δ → 0 (for more conditions required
by the KAM theorem, satisfied in our case, see Tabor 1989.)

Appendix C
Employing (3) it is easy to show that

vx =
dx

dt
=

c

(cosh η − cos ξ )2

(
−ĉ

dη

dt
− ŝ

dξ

dt

)
+

sinh η

cosh η − cos ξ

dc

dt
,

vy =
dy

dt
=

c

(cosh η − cos ξ )2

(
ĉ
dξ

dt
− ŝ

dη

dt

)
+

sin ξ

cosh η − cos ξ

dc

dt
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (C 1)

where

ĉ = cosh η cos ξ − 1 and ŝ = sinh η sin ξ

However, the Cartesian velocity components are given by

vx =
∂Ψ

∂y
= (1/c)

(
ĉ
∂Ψ

∂ξ
− ŝ

∂Ψ

∂η

)
, vy = −∂Ψ

∂x
= (1/c)

(
− ĉ

∂Ψ

∂η
− ŝ

∂Ψ

∂ξ

)
(C 2)

Substituting (B2) into (B1) and employing the identity ĉ2 + ŝ2 = (coshη − cosξ )2

equations (24) are recovered.

REFERENCES

Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 1–21.

Aref, H. & Balachandar, S. 1986 Chaotic advection in a Stokes flow. Phys. Fluids 29, 3515–3521.

Ballal, B. Y. & Rivlin, R. S. 1976 Flow of a Newtonian fluid between eccentric rotating cylinders:
Inertial effects. Arch. Rat. Mech. Anal. 62, 237–294.

Darquenne, C. & Pavia, M. 1996 Two- and -three dimensional simulations of aerosol transport
and deposition in alveolar zone of human lung. J. Appl. Physiol. 80, 2889–2898.

Darquenne, C. 2001 A realistic two dimensional model of aerosol transport and deposition in the
alveolar zone of the human lung. J. Aerosol Sci. 32, 1161–1174.

Federspiel, W. J. & Fredberg, J. J. 1988 Axial dispersion in respiratory bronchioles and alveolar
ducts. J. Appl. Physiol. 64, 2614–2621.

Fredberg, J. J. 2000. Frozen objects: small airways, big breaths, and asthma. J Allergy Clin Immunol.
106, 615–624.

Gradshtyn, I. S. & Ryzhik, I. M. 1984 Tables of Integrals, Series, and Products, 5th edn. Academic.

Haber, S., Butler, J. P., Brenner, H., Emanuel, I. & Tsuda, A. 2000 Shear flow over a self similar
expanding pulmonary alveolus during rhythmical breathing. J. Fluid Mech. 405, 243–268.

Haber, H. & Tsuda, A. 2003 Gravitational deposition in a rhythmically expanding and contracting
alveolus. J. Appl. Physiol. 95, 657–671.

Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Kluwer.

Henry, F. S., Butler, J. P. & Tsuda, A. 2002 Kinematically irreversible flow and aerosol transport
in the pulmonary acinus: a departure from classical dispersive transport. J. Appl. Physiol. 92,
835–845.

Horner, M., Metcalfe, G., Wiggins, S. & Ottino, J. M. 2002 Transport enhancement mechanisms
in open cavities. J. Fluid Mech. 452, 199–229.

Hydon, P. E. 1994 Resonant advection by oscillatory flow in a curved pipe. Physica D 76, 44–54.

Hydon, P. E. 1994 Resonant and chaotic advection in a curved pipe. Caos, Solitons Fractals 4,
941–954.

Karl, A., Henry, F. S. & Tsuda, A. 2004 Low Reynolds number viscous flow in an alveolated
duct. Trans. ASME: J. Biomech. Engng 126, 13–19.

Lichtenberg, A. J. & Lieberman, M. A. 1992 Regular and Chaotic Dynamics. Springer.



184 S. Haber and A. Tsuda

Miki, H., Butler, J. P., Rogers, R. A., & Lehr, J. 1993 Geometric hysteresis in pulmonary surface
to volume ratio during tidal breathing. J. Appl. Physiol. 75, 1630–1636.

Ottino, J. M., Leong, C. W., Rising, H. & Swanson, P. D. 1988 Morphological structures produced
by mixing in chaotic flows. Nature 333, 419–425.

Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge
University Press.

Pozrikidis, C. 1994 Shear flow over a plane wall with an axisymmetric cavity or a circular orifice
of finite thickness. Phys. Fluids 6, 68–79.

Solomon, T. H., Weeks, E. R. & Swinney, H. L. 1994 Chaotic advection in a two-dimensional flow:
Levy flights and anomalous diffusion. Physica D 76, 70–84.

Tabor, M. 1989 Chaos and Integrability in Nonlinear Dynamics. Wiley.

Tippe, A. & Tsuda, A. 2000 Recirculating flow in an expanding alveolar model: experimental
evidence of flow-induced mixing of aerosols in the pulmonary acinus. J. Aerosol Sci. 31,
979–986.

Tsuda, A., Butler, J. P. & Fredberg, J. J. 1994a Effects of alveolated duct structure on aerosol
kinetics. I. diffusional deposition in the absence of gravity. J. Appl. Physiol. 76, 2497–2509.

Tsuda, A., Butler, J. P. & Fredberg, J. J. 1994b Effects of alveolated duct structure on aerosol
kinetics. II. Gravitational sedimentation and inertial impaction. J. Appl. Physiol. 76, 2510–
2516.

Tsuda, A., Federspiel, W. J., Grant, Jr, P. A. & Fredberg, J. J. 1991 Axial dispersion of inert
species in alveolated channels. Chem. Engng Sci. 46, 1419–1426.

Tsuda, A., Henry, F. S. & Butler, J. P. 1995 Chaotic mixing of alveolated duct flow in rhythmically
expanding pulmonary acinus. J. Appl. Physiol. 79, 1055–1063.

Tsuda, A., Rogers, R. A., Hydon, P. E. & Butler, J. P. 2002 Chaotic mixing deep in the lung.
Proc. Natl Acad. Sci. USA 99, 10173–10178.

Weibel, E. R. 1963 Morphology of the lung. Academic.

Weibel, E. R. 1986 Functional morphology of lung parenchyma. In: Handbook of Physiology,
The Respiratory System (ed. A. P. Fishman), sect. 3, vol. III, chap. 8, pp. 89–111. American
Physiology Society, Bethesda, MD.


